Graph Theory

Daniel Gibson, Concordia University
Jackelyn Nagel, Dominican University
Benjamin Stanley, New Mexico State University
Allison Zale, Illinois State University

Dr. Saad El-Zanati, Faculty Mentor
Ryan Bunge Graduate Assistant

2012 Illinois State University REU
There is a group of six people and not everyone is friends with everyone else.

Friends

Adam: Ben, Cindy
Ben: Adam, Cindy
Cindy: Adam, Ben, Dave, Edward, Frank
Dave: Cindy
Edward: Cindy, Frank
Frank: Cindy, Edward

How would you draw something to depict these friendships?
Friendship Graphs

This is one way that these relationships can be diagrammed.

<table>
<thead>
<tr>
<th>Friends</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A: B, C</td>
<td></td>
</tr>
<tr>
<td>B: A, C</td>
<td></td>
</tr>
<tr>
<td>C: A, B, D, E, F</td>
<td></td>
</tr>
<tr>
<td>D: C</td>
<td></td>
</tr>
<tr>
<td>E: C, F</td>
<td></td>
</tr>
<tr>
<td>F: C, E</td>
<td></td>
</tr>
</tbody>
</table>

![Friendship Graph Diagram](image)
What is a Graph?

A graph G is an ordered pair $(V(G), E(G))$, where $V(G)$ is a nonempty finite set and $E(G)$ is a set of 2-element subsets of $V(G)$.

Vertex and Edge Sets

$V(G)$ is called the vertex-set of G.
- The elements or “things” in $V(G)$ are the vertices of G.
- $|V(G)|$ (number of vertices in a graph G) is called the order of G.

$E(G)$ is called the edge-set of G.
- The elements of “things” in $E(G)$ are the edges of G.
- $|E(G)|$ (number of edges in a graph G) is called the size of G.
An Example

An example of a Graph of Order 5 and Size 6:

\[G = (\{0, 1, 2, 3, 4\}, \{\{0, 1\}, \{0, 2\}, \{0, 3\}, \{1, 2\}, \{1, 3\}, \{2, 4\}, \{3, 4\}\}) \]
An Example

An example of a Graph of Order 5 and Size 6:

\[G = (\{0, 1, 2, 3, 4\}, \{\{0, 1\}, \{0, 2\}, \{0, 3\}, \{1, 2\}, \{1, 3\}, \{2, 4\}, \{3, 4\}\}) \]

This is a \textit{drawing} of \(G \):
More Terminology

Definitions

- A vertex is **incident** with an edge if the edge is connected to that edge and vice versa.
- A vertex is **adjacent** with another vertex if they are both incident with the same edge.
- An edge is **adjacent** with another edge if both edges are incident with the same vertex.

Coloring

We often talk about coloring a graph’s vertices. **Coloring** is assigning a color to a vertex, and we usually do this to group the vertices into subsets. To **properly color** a graph, no two adjacent vertices are assigned the same color.
Bipartite Graphs

Definition

A graph G is bipartite if $V(G)$ can be colored properly so that no two connected edges are the same color with a minimum of two colors, say red and black. Therefore, every edge has one red end-vertex and one black end-vertex.
The degree of a vertex is the number of edges that are connected to that vertex, and is denoted by \(\text{deg}(v) \).

A graph \(G \) is regular if every vertex of \(G \) has the same degree.

- If \(\text{deg}(v) = n \) for every vertex \(v \) in \(V(G) \), then \(G \) is called \(n \)-regular.
- This example is 3-regular because the degree of each vertex is 3.
Complete Graphs

A graph is a complete graph if every vertex is adjacent to every other vertex.

In other words, there is an edge between every vertex.

A complete graph with \(n \) vertices (and \(n \) edges) is denoted \(K_n \).

Complete Bipartite Graphs

A complete bipartite graph with \(m \) and \(n \) vertices in each of the vertex subsets respectively is denoted \(K_{m,n} \) and has \(m \times n \) edges.

In \(K_{m,n} \), each vertex in the bottom set is adjacent to every vertex in the top set, but not adjacent to any vertices within the bottom vertex set.
Cycles

Definition

A cycle is a connected 2-regular graph. A cycle is determined by the number of vertices. For example, a cycle with 8 vertices is called an 8-Cycle or a C_8.

Observations

- All cycles of the same size are isomorphic (That is, structurally the same).
- All cycles with size a multiple of two are bipartite.

Example:
Trees

Definition

A **tree** is a graph that does not contain any cycles.

Types of Trees

- A **path** is a tree whose vertices except for two have degree two and those two exclusions have degree one.
- A **caterpillar** is a tree which if you chop off all of its legs is a path.
- A **lobster** is a tree which if you “chop off” all of it’s legs is a caterpillar.
- A **star** is a tree with one vertex which is adjacent with every other vertex

Theorem

All trees are bipartite. (Skiena, 1990)
Paths
Caterpillars
Lobsters
Stars
Graph Labelings

Labeling

- Let G be a graph with n edges. A labeling of G is a one-to-one function from $V(G)$ to the set of nonnegative integers.

- In other words, a labeling of G is assigning a number to each vertex. Labeling allows us to discuss edge length.

This is an example of a labeled graph G:

Here is G placed inside K_5:
Length of an edge in K_n

Definition

Let $V(K_n) = \mathbb{Z}_n$ and place the vertices of K_n around an n-gon.

- The **label** of an edge $\{i, j\}$ is $|i - j|$.

- The **length** of $\{i, j\}$ is the shortest distance from i to j “around” the polygon:

 $$\text{length}(\{i, j\}) = \min(\{|i - j|, n - |i - j|\}).$$

- Edge $\{i, j, \}$ is a **wrap-around edge** (denoted with *) if its length is not equal to its label.
Length of an edge in K_n

Note

The number of edges of length i is dependent on n

- If $n = 2t + 1$, then K_n consists of n edges of length i for each $i \in \{1, 2, \ldots, t\}$.

- In $n = 2t$, then K_n consists of n edges of length i for each $i \in \{1, 2, \ldots, t - 1\}$ and t edges of length t (these form a 1-factor in K_{2t}).
Length of an edge in $K_{n,n}$

- Let $V(K_{n,n}) = (\mathbb{Z}_n \times \{0\}) \cup (\mathbb{Z}_n \times \{1\})$.
- Denote edge $\{(i,0), (j,1)\}$ in $K_{n,n}$ by (i,j).
- The length of edge (i,j) is $j - i$ if $j \geq i$ and $n + j - i$, otherwise.
- Note that $E(K_{n,n})$ consists of n edges of length i for $0 \leq i \leq n - 1$.

\[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
\end{array}\]

\[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
\end{array}\]
Length of an edge in $K_{n,n}$

- Let $V(K_{n,n}) = (\mathbb{Z}_n \times \{0\}) \cup (\mathbb{Z}_n \times \{1\})$.
- Denote edge $\{(i, 0), (j, 1)\}$ in $K_{n,n}$ by (i, j).
- The length of edge (i, j) is $j - i$ if $j \geq i$ and $n + j - i$, otherwise.
- Note that $E(K_{n,n})$ consists of n edges of length i for $0 \leq i \leq n - 1$.
Graph Decomposition and Designs

G-decomposition

Let G and H be graphs (or multigraphs) with G a subgraph of H. A **G-decomposition** of H is a partition of the edge set of H into subgraphs isomorphic to G (called G-blocks).

(H, G)-design

An G-decomposition of H is also called an (H, G)-design.

This is an example of a G-decomposition where H is K_4 and G is a P_4 (G is shown below):
Cyclic Decompositions and Clicking

Clicking

Let $V(K_n) = \mathbb{Z}_n$, and let G be a subgraph of K_n. By clicking G, we mean applying the isomorphism $i \rightarrow i + 1$ to $V(G)$.

Cyclic Decompositions

A G-decomposition of K_n is cyclic if clicking G preserves the G-blocks of the decomposition.

A cyclic K_3 decomposition of K_7 where $V(K_7) = \{0, 1, \ldots, 6\}$:

$\rightarrow (0, 1, 3)$
Cyclic Decompositions and Clicking

Clicking
Let $V(K_n) = \mathbb{Z}_n$, and let G be a subgraph of K_n. By clicking G, we mean applying the isomorphism $i \rightarrow i + 1$ to $V(G)$.

Cyclic Decompositions
A G-decomposition of K_n is cyclic if clicking G preserves the G-blocks of the decomposition.

A cyclic K_3 decomposition of K_7 where $V(K_7) = \{0, 1, \ldots, 6\}$: $\rightarrow (0, 1, 3) \rightarrow (1, 2, 4)$
Cyclic Decompositions and Clicking

Clicking

Let $V(K_n) = \mathbb{Z}_n$, and let G be a subgraph of K_n. By clicking G, we mean applying the isomorphism $i \rightarrow i + 1$ to $V(G)$.

Cyclic Decompositions

A G-decomposition of K_n is cyclic if clicking G preserves the G-blocks of the decomposition.

A cyclic K_3 decomposition of K_7 where $V(K_7) = \{0, 1, \ldots, 6\}$:

$\rightarrow (0, 1, 3) \rightarrow (1, 2, 4) \rightarrow (2, 3, 5)$
Cyclic Decompositions and Clicking

Clicking

Let $V(K_n) = \mathbb{Z}_n$, and let G be a subgraph of K_n. By clicking G, we mean applying the isomorphism $i \rightarrow i + 1$ to $V(G)$.

Cyclic Decompositions

A G-decomposition of K_n is cyclic if clicking G preserves the G-blocks of the decomposition.

A cyclic K_3 decomposition of K_7 where $V(K_7) = \{0, 1, \ldots, 6\}$:

$\rightarrow (0, 1, 3) \rightarrow (1, 2, 4) \rightarrow (2, 3, 5) \rightarrow (3, 4, 6)$
Cyclic Decompositions and Clicking

Clicking

Let $V(K_n) = \mathbb{Z}_n$, and let G be a subgraph of K_n. By clicking G, we mean applying the isomorphism $i \rightarrow i + 1$ to $V(G)$.

Cyclic Decompositions

A G-decomposition of K_n is cyclic if clicking G preserves the G-blocks of the decomposition.

A cyclic K_3 decomposition of K_7 where $V(K_7) = \{0, 1, \ldots, 6\}$:

$\rightarrow (0, 1, 3) \rightarrow (1, 2, 4) \rightarrow (2, 3, 5)$
$\rightarrow (3, 4, 6) \rightarrow (4, 5, 0)$
Cyclic Decompositions and Clicking

Clicking

Let \(V(K_n) = \mathbb{Z}_n \), and let \(G \) be a subgraph of \(K_n \). By clicking \(G \), we mean applying the isomorphism \(i \rightarrow i + 1 \) to \(V(G) \).

Cyclic Decompositions

A \(G \)-decomposition of \(K_n \) is cyclic if clicking \(G \) preserves the \(G \)-blocks of the decomposition.

A cyclic \(K_3 \) decomposition of \(K_7 \) where \(V(K_7) = \{0, 1, \ldots, 6\} \):
\[
\rightarrow (0, 1, 3) \rightarrow (1, 2, 4) \rightarrow (2, 3, 5) \\
\rightarrow (3, 4, 6) \rightarrow (4, 5, 0) \rightarrow (5, 6, 1)
\]
Cyclic Decompositions and Clicking

Clicking

Let $V(K_n) = \mathbb{Z}_n$, and let G be a subgraph of K_n. By **clicking** G, we mean applying the isomorphism $i \rightarrow i + 1$ to $V(G)$.

Cyclic Decompositions

A G-decomposition of K_n is **cyclic** if clicking G preserves the G-blocks of the decomposition.

A cyclic K_3 decomposition of K_7 where $V(K_7) = \{0, 1, \ldots, 6\}$:

$\rightarrow (0, 1, 3) \rightarrow (1, 2, 4) \rightarrow (2, 3, 5) \rightarrow (3, 4, 6) \rightarrow (4, 5, 0) \rightarrow (5, 6, 1) \rightarrow (6, 0, 2)$
Cyclic Decompositions in Complete Bipartite Graphs

Clicking

Let

\[V(K_{n,n}) = (\mathbb{Z}_n \times \{0\}) \cup (\mathbb{Z}_n \times \{1\}) \].

By clicking \(G \), we mean applying the isomorphism \((i, j) \to (i + 1, j) \) to \(V(G) \).

Cyclic Decompositions

A \(G \)-decomposition of \(K_{n,n} \) is cyclic if clicking \(G \) preserves the \(G \)-blocks of the decomposition.

A cyclic \(S_5 \) decomposition of \(K_{5,5} \).
Cyclic Decompositions in Complete Bipartite Graphs

Clicking

Let

\[V(K_{n,n}) = (\mathbb{Z}_n \times \{0\}) \cup (\mathbb{Z}_n \times \{1\}). \]

By clicking \(G \), we mean applying the isomorphism \((i, j) \rightarrow (i + 1, j)\) to \(V(G) \).

Cyclic Decompositions

A \(G \)-decomposition of \(K_{n,n} \) is cyclic if clicking \(G \) preserves the \(G \)-blocks of the decomposition.

A cyclic \(S_5 \) decomposition of \(K_{5,5} \).
Cyclic Decompositions in Complete Bipartite Graphs

Cyclic Decompositions

A G-decomposition of $K_{n,n}$ is cyclic if clicking G preserves the G-blocks of the decomposition.

A cyclic S_5 decomposition of $K_{5,5}$.

Clicking

Let $V(K_{n,n}) = (\mathbb{Z}_n \times \{0\}) \cup (\mathbb{Z}_n \times \{1\})$. By clicking G, we mean applying the isomorphism $(i,j) \rightarrow (i + 1,j)$ to $V(G)$.
Cyclic Decompositions in Complete Bipartite Graphs

Clicking

Let $V(K_{n,n}) = (\mathbb{Z}_n \times \{0\}) \cup (\mathbb{Z}_n \times \{1\})$. By clicking G, we mean applying the isomorphism $(i,j) \rightarrow (i + 1, j)$ to $V(G)$.

Cyclic Decompositions

A G-decomposition of $K_{n,n}$ is cyclic if clicking G preserves the G-blocks of the decomposition.

A cyclic S_5 decomposition of $K_{5,5}$.
Cyclic Decompositions in Complete Bipartite Graphs

Clicking

Let $V(K_{n,n}) = (\mathbb{Z}_n \times \{0\}) \cup (\mathbb{Z}_n \times \{1\})$. By clicking G, we mean applying the isomorphism $(i, j) \rightarrow (i + 1, j)$ to $V(G)$.

Cyclic Decompositions

A G-decomposition of $K_{n,n}$ is cyclic if clicking G preserves the G-blocks of the decomposition.

A cyclic S_5 decomposition of $K_{5,5}$.
Rosa’s Original Labelings
for a graph G with n edges

ρ-labeling

Vertex labels from $\{0, 1, \ldots, 2n\}$; one edge of each length.
There exists a cyclic (K_{2n+1}, G)-design if and only if G has a ρ-labeling.
Rosa’s Original Labelings for a graph G with n edges

<table>
<thead>
<tr>
<th>ρ-labeling</th>
<th>Vertex labels from ${0, 1, \ldots, 2n}$; one edge of each length. There exists a cyclic (K_{2n+1}, G)-design if and only if G has a ρ-labeling.</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ-labeling</td>
<td>No “wrap-arounds.” Also, cyclic $(K_{2n+2} - F, G)$-designs</td>
</tr>
</tbody>
</table>
Rosa’s Original Labelings
for a graph G with n edges

<table>
<thead>
<tr>
<th>ρ-labeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex labels from ${0, 1, \ldots, 2n}$; one edge of each length. There exists a cyclic (K_{2n+1}, G)-design if and only if G has a ρ-labeling.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>σ-labeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>No “wrap-arounds.” Also, cyclic $(K_{2n+2} - F, G)$-designs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>β-labeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.k.a. “graceful.” Vertex labels from ${0, 1, \ldots, n}$.</td>
</tr>
</tbody>
</table>
Rosa’s Original Labelings

for a graph G with n edges

<table>
<thead>
<tr>
<th>Labeling</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ-labeling</td>
<td>Vertex labels from ${0, 1, \ldots, 2n}$; one edge of each length. There exists a cyclic (K_{2n+1}, G)-design if and only if G has a ρ-labeling.</td>
</tr>
<tr>
<td>σ-labeling</td>
<td>No “wrap-arounds.” Also, cyclic $(K_{2n+2} - F, G)$-designs</td>
</tr>
<tr>
<td>β-labeling</td>
<td>a.k.a. “graceful.” Vertex labels from ${0, 1, \ldots, n}$.</td>
</tr>
<tr>
<td>α-labeling</td>
<td>G must be bipartite. All vertex labels from one part in the vertex partition must be less than those of the other part.</td>
</tr>
</tbody>
</table>
\(\alpha\)-labelings

Theorems

- Every cycle with a size that is a multiple of 4 has an \(\alpha\)-labeling.
- Every path, caterpillar, and lobster has an \(\alpha\)-labeling.

Conjecture

The union of two cycles with size that is 2 more than a multiple of 4 has an \(\alpha\)-labeling.

\(\alpha\)-labelings, although very restrictive are very useful. One of their better applications is they allow for something called stretching. We denote the largest number in the top partition of an \(\alpha\)-labeling with the Greek letter \(\lambda\).
Examples of Alpha Labelings
Examples of Alpha Labelings

\[\lambda = 0 \]

0
3 2 1
12 11 10 9 8 7

\[\lambda = 6 \]

0 1 4 2 5 6
12 11 10 9 8 7

\[\lambda = 1 \]

0 1
4 3 2

\[\lambda = 3 \]

0 1 2 3
8 7 5 4

8 7 5 4

4 3 2
0 1 2 3
Examples of Alpha Labelings

\[\lambda = 0 \]

\[\lambda = 6 \]
Examples of Alpha Labelings

\begin{align*}
\lambda &= 0 \\
&\quad \begin{array}{cccccc}
0 & 1 & 4 & 2 & 5 & 6 \\
3 & 2 & 1 & 0 & 1 & 4 & 2 & 5 & 6 \\
\end{array} \\
\lambda &= 6 \\
&\quad \begin{array}{cccccc}
0 & 1 & 4 & 2 & 5 & 6 \\
12 & 11 & 10 & 9 & 8 & 7 \\
\end{array} \\
\lambda &= 1 \\
&\quad \begin{array}{cccc}
0 & 1 \\
4 & 3 & 2 \\
0 & 1 & 2 & 3 \\
8 & 7 & 5 & 4 \\
\end{array}
\end{align*}
Examples of Alpha Labelings

\[\lambda = 0 \]

\[\lambda = 6 \]

\[\lambda = 1 \]

\[\lambda = 3 \]
You can use an α-labeling as a template in order to not just decompose a K_{2n+1}, but also K_{2nx+1} where x is any natural number.

Definition

In other words, stretching an α-labeling allows for a G-Block to decompose an infinite number of graphs. We call this process stretching, because you simply "stretch the edge lengths by the size of the original graph.

Example:

![Graph example](image-url)
You can use an α-labeling as a template in order to not just decompose a K_{2n+1}, but also K_{2nx+1} where x is any natural number.

Definition

In other words, **stretching** an α-labeling allows for a G-Block to decompose an infinite number of graphs. We call this process "stretching, because you simply "stretch the edge lengths by the size of the original graph."

Example:

![Graphs](image-url)
We know that there is an α-labeling of the union of any two cycles with size $4r$ where r is a natural number.

“Gee, I wonder...”

- Is there an α-labeling of any two cycles with size $4s + 2$ where s is a natural number?
- Is there an α-labeling of the union of any number of cycles with size $4r$ where r is a natural number?
- Can you take the union of multiple classifications of graphs with α-labelings to generate a labeling that will decompose a complete bipartite graph?
Answer

YES!
Theorem

Let G_i be a bipartite graph with size m_i, α-labeling f_i, critical value λ_i, and vertex bipartition $\{A_i, B_i\}$ for all i such that $1 \leq i \leq n$. Also, let $G = G_1 \cup G_2 \cup \cdots \cup G_n$. There exists a labeling of G such that G cyclically decomposes $K_{m+1,m+1} - F$ where F is a 1-factor of $K_{m+1,m+1}$.
Arrangement of G_i

If n is even

Let $n = 2t$ for some positive integer, t. Without loss of generality we can assume

\[\lambda_1 \geq \lambda_{t+1} \geq \lambda_2 \geq \lambda_{t+2} \geq \cdots \geq \lambda_t \geq \lambda_{2t}. \]
Arrangement of G_i

If n is even

Let $n = 2t$ for some positive integer, t. Without loss of generality we can assume

$$\lambda_1 \geq \lambda_{t+1} \geq \lambda_2 \geq \lambda_{t+2} \geq \cdots \geq \lambda_t \geq \lambda_{2t}.$$

If n is odd

Let $n = 2t - 1$ for some positive integer, t. Without loss of generality we can assume

$$\lambda_1 \geq \lambda_{t+1} \geq \lambda_2 \geq \lambda_{t+2} \geq \cdots \geq \lambda_{t-1} \geq \lambda_{2t-1} \geq \lambda_t.$$
Example when n is even

For G_i such that $1 \leq i \leq t$

$$f'_i(v) = \begin{cases}
 f_i(v) + \sum_{j=1}^{i-1} (\lambda_j + 1), & v \in B_i \\
 f_i(v) + \sum_{j=1}^{i-1} (\lambda_j + 1) + m - \sum_{j=1}^{i-1} (m_j + m_{2t-j+1}) - m_i, & v \in A_i
\end{cases}$$
Example when n is even

For G_i such that $t + 1 \leq i \leq 2t$

$$f'_i(v) = \begin{cases}
 f_i(v) + \sum_{j=t+1}^{i-1} (\lambda_j + 1), & v \in A_i \\
 f_i(v) + \sum_{j=t+1}^{i-1} (\lambda_j + 1) + m - \sum_{j=t+1}^{i-1} (m_j + m_{2t-j+1}) - m, & v \in B_i
\end{cases}$$
Example when n is even
Example when n is odd

For G_i such that $1 \leq i \leq t$

$$f'_i(v) = \begin{cases}
 f_i(v) + \sum_{j=1}^{i-1} (\lambda_j + 1), & v \in B_i \\
 f_i(v) + \sum_{j=1}^{i-1} (\lambda_j + 1) + m - \sum_{j=1}^{i-1} (m_j + m_{2t-j}) - m_i, & v \in A_i
\end{cases}$$
Example when n is odd

For G_i such that $t + 1 \leq i \leq 2t - 1$

$$f'_i(v) = \begin{cases}
 f_i(v) + \sum_{j=t+1}^{i-1} (\lambda_j + 1), & v \in A_i \\
 f_i(v) + \sum_{j=t+1}^{i-1} (\lambda_j + 1) + m - \sum_{j=t+1}^{i} (m_j + m_{2t-j+1}), & v \in B_i
\end{cases}$$
Example when n is odd
Corollaries

Corollary 1

Since we are able to do this with any number of graphs that admit an α-labeling, then we can produce a labeling that decomposes a complete bipartite graph using the union of any two cycles whose sizes are congruent to 0 (mod 4).

Corollary 2

Our labeling, although it is based on α-labelings, is not an α-labeling itself. However, it does allow for stretching. Therefore, we can use a G-Block to decompose any $K_{mx+1, mx+1}$ complete bipartite graph; where m is the size of the G-Block, and x is any natural number.
THANK YOU!